Mean ergodic theorem for semigroups of linear operators in multi-Banach spaces
نویسندگان
چکیده
منابع مشابه
A Mean Ergodic Theorem For Asymptotically Quasi-Nonexpansive Affine Mappings in Banach Spaces Satisfying Opial's Condition
متن کامل
Mean Ergodic Theorems for C0 Semigroups of Continuous Linear Operators
In this paper we obtained mean ergodic theorems for semigroups of bounded linear or continuous affine linear operators on a Banach space under non-power bounded conditions. We then apply them to the wave equation and the system of elasticity to show that the mean of their solutions converges to their equilibriums.
متن کاملA quantitative Mean Ergodic Theorem for uniformly convex Banach spaces
We provide an explicit uniform bound on the local stability of ergodic averages in uniformly convex Banach spaces. Our result can also be viewed as a finitary version in the sense of T. Tao of the Mean Ergodic Theorem for such spaces and so generalizes similar results obtained for Hilbert spaces by Avigad, Gerhardy and Towsner [1] and T. Tao [11].
متن کاملa mean ergodic theorem for asymptotically quasi-nonexpansive affine mappings in banach spaces satisfying opial's condition
متن کامل
C0-semigroups of linear operators on some ultrametric Banach spaces
C0-semigroups of linear operators play a crucial role in the solvability of evolution equations in the classical context. This paper is concerned with a brief conceptualization of C0-semigroups on (ultrametric) free Banach spaces E. In contrast with the classical setting, the parameter of a given C0-semigroup belongs to a clopen ball Ωr of the ground field K. As an illustration, we will discuss...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2014
ISSN: 1029-242X
DOI: 10.1186/1029-242x-2014-402